Search the Blog

Showing posts with label CSS. Show all posts
Showing posts with label CSS. Show all posts

Thursday, August 29, 2019

Palindrome number program in Pythan

In this post i will explain the palindome number program in python and also to expalin the same i also created a youtube video so you can check also complete step by step and also output in IDE. 

Palindrome number program in Pythan

Palindrome number program in Pythan


Palindrome No Program in Python-



num = int(input("enter a number: "))
temp = num
rev = 0while temp:
    rev = (rev * 10) + (temp % 10)
    temp = temp // 10if num == rev:
    print("No is palindrome")
else:
    print("No is not palindrome")



Output-
When entered Item is- 747
   No is Palindrome.

when entered Item is- 67
   No is notb Palindrome.


See Also-Pythan All type of program







Friday, August 23, 2019

SQL SERVER High Availability (HA)

High Availability (HA)  of the server of  Database is the solution( process, technology ) to make the application database available 24x7 under either planned or un - planned conditions.   


There are five type of options in MS SQL Server to achieve and configure a setup for high availability solution for the databases. 
SQL SERVER High Availability (HA)


Replication 
The source(Main) data will be copied to destination, through replication agents (jobs). Object level technology. 
Main terminology 

  1.  Publisher is source server. 
  2.  Distributor is optional and stores replicated data in a suitble environemt for the subscriber.  
  3.  Subscriber is the destination server. 

Log Shipping 
The source data will be copied to destination through Transaction Log backup jobs. Various Database level technology. 
Main terminology 

  1.  Primary server is source server. 
  2.  Secondary server is destination server.
  3.  Monitor server is optional and will be monitored by log   shipping status.  


Mirroring 
The primary data will be copied to a secondary through a network transaction basis with help of mirroring endpoint and port number. Database level technology. 
Main terminology 

  1.  Principal server is source server always. 
  2.  Mirror server is destination server always.
  3.  Witness server is optional and can be used to make automatic  failover. 


Clustering 
The data will be stored in shared location which is used by both primary and secondary servers based on availability of the server. Instance level technology. Windows Clustering setup is required with shared storage 
Main terminology 

  1.  Active node is where SQL Services are running.
  2.  Passive node is where SQL Services are not running. 

AlwaysON Availability Groups 
 The primary data will be copied to secondary through network transaction basisand  Group of database level technology. Windows Clustering setup is required without shared storage for ALwaysON Availibilty Groups. 
Main terminology 

  1.  Primary replica is source server.
  2.  Secondary replica is destination server. 
Check Java Pattern Program
Java traingle pattern program




Sql Server error 276

Sunday, August 18, 2019

JAVA program to return product of array element

Implement a function in JAVA of given array of integers, returns a new array for which every index carries the value of the product of the remaining elements.



Given array [2,3,1,4,5] it would return [60,40,120,30,24]


JAVA program to return product of array element



public class Main {

   List<Integer> arrInput1[];
   static  List<Integer> arrOutput1[];
   static int n;
   public static void main(String[] ar)
   {
   System.out.println("Enter the array size");
   Scanner a_dizsweb= new Scanner(System.in);
   n=a_dizsweb.nextInt();
   ArrayList<Integer> arrInput1=new ArrayList<Integer>();
   ArrayList<Integer>    arrOutput1=new ArrayList<Integer>();
     System.out.println("Enter the array size  ");

    for (int i=0;i<n;i++)
    {
          arrInput1.add(i, new Scanner(System.in).nextInt());
    }

findSpecialProduct(arrInput1);

    }
    public static void findSpecialProduct(List<Integer> inputArray) {
   ArrayList<Integer> arrOutput1=new ArrayList<Integer>();
         for(int k=0; k<n;k++)
      {
          int indexvalue1=1;
          int index=k;
       for (int i =0; i<n;i++)
       {
           if (index==i)
           {
             indexvalue1=indexvalue1*1;
           }
           else
           {
            indexvalue1=indexvalue1*inputArray.get(i); 
           }
       }
       arrOutput1.add(indexvalue1);
      }
/*     
 for(Integer inta : arrOutput) {
            System.out.println(inta.get());
        }*/
        arrOutput1.forEach(System.out::println);
   
    }

}

Implement a function which, given an array of integers, returns a new array for which every index carries the vale of the product of the remaining elements.

SQL Server Lock Type and Mode

SQL Server Locks are used to restrict the user and access and prevent the unautorised access to data and at the same time.


SQL Server Lock Type and Mode



SQL Server have folowing Lock Type-

1- RID
2- Key
3- Page
4- Extent
5- Table
6- DB

SQL Server have folowing Mode Type-

1- Shared (S)
2- Update (U)
3- Exclusive (X)
4- Intent
5- Schema
6- Bulk Update (BU)

Saturday, August 17, 2019

SQL Server Profiler Logout class Interpretation

Features of Logout Class-

 ApplicationName  (Data Types- nvarchar) (Column Id- 10)
         Name of the client application(Software which runs on user end) that created the connection to an instance of SQL Server. This column is populated with the values passed by the application(Every application have a unique code) rather than the displayed name of  the program.
SQL Server Profiler Application  Name


 ClientProcessID  (Data Types- int) (Column Id- 9)
           ID assigned by the host computer(Servefr) to the process (User application)where the client application is running. This data column(Value) is populated if the client process ID is provided by the client

 CPU  (Data Types- int) (Column Id- 18)
          Amount of CPU time (in milliseconds) used by the user during their connection(End User)

DatabaseID  (Data Types- int) (Column Id- 3)
          ID of the database(A Special ID is assigned) specified by the USE database statement or the default database if no USE database statement has been issued for a given instance (Session). SQL Server Profiler displays the name of the database(Main Database of application) if the ServerName data column is captured in the trace and the server is available.                
Determine the value for a database by using the DB_ID function(Special function to identify).

DatabaseName  (Data Types- nvarchar) (Column Id- 35)
          Name of the database(Session database) in which the user statement is running.

Duration  (Data Types- bigint) (Column Id- 13)
         Amount of time since the user logged in() Time of session (approximately).

EndTime  (Data Types- datetime) (Column Id- 15)
         End time of the logout() When the session Close.

EventClass  (Data Types- int) (Column Id- 27)
        Type of event = 15 ( Their are 15 types of event like logging , logout, etc).

EventSequence (Data Types- int) (Column Id- 51)
        The sequence of a given event within the request (this will show the details of event.

HostName (Data Types- nvarchar) (Column Id- 8)
        Name of the computer on which the client is running (End User). This data column is populated if the host                  name is provided by the client( End User). To determine the host name, use the HOST_NAME function (Function to know the host name).

IsSystem (Data Types- int) (Column Id- 60)
        Indicates whether the event occurred on a system process or a user process1 = system, 0 = user (This method will let to know is this an automatic or manual enent).

LoginName (Data Types- nvarchar) (Column Id- 11)
        Name of the login of the user (either the SQL Server security login or the Microsoft Windows login            credentials in the form of DOMAIN \ username).

LoginSid (Data Types- image) (Column Id- 41)
         Security identification number (S I D) of the logged-in user. You can find this information in                           the sys.server_principals catalog view. Each S I D is unique for each login in the server.

NTDomainName (Data Types- nvarchar) (Column Id- 7)
         Windows domain to which the user belongs.

NTUserName (Data Types- nvarchar) (Column Id- 6)
         Windows user name

Reads (Data Types- int) (Column Id- 16)
         Number of logical read I/Os issued by the user during the connection.

RequestID  (Data Types- int) (Column Id- 49)
         ID of the request containing the statement.

ServerName (Data Types- int) (Column Id- 26)
         Name of the instance of SQL Server being traced.

SessionLoginName (Data Types- int) (Column Id- 64)
         Login name of that user who originated the session. For example, if you connect to SQL Server using           Login1 and execute a statement as Login2, SessionLoginName shows Login1                                             and LoginName shows Login2. This column displays both SQL Server and Windows logins.

SPID (Data Types- int) (Column Id- 12)
         ID of the session on which the event occurred( Session unique ID).


StartTime(Data Types- datetime) (Column Id- 14)
         Time at which the event started, if available.

Success (Data Types- int) (Column Id- 23)
         1 = success. 0 = failure. For example, a value of 1 indicates success of that permission  check and a                 value of 0 indicates failure of that check.

Writes (Data Types- bigint) (Column Id- 17)
         Number of logical write Inputs/Outputs issued by the user during the connection.

GroupID(Data Types- int) (Column Id- 66)
     ID of the work load group(Main session) where the SQL Trace event fires.

Friday, August 16, 2019

According to usages types of database


According to usages types of database

According to usage their are 11 different type of database-
  1. Centralised database.
  2. Distributed database.
  3. Personal database.
  4. End-user database.
  5. Commercial database.
  6. NoSQL database.
  7. Operational database.
  8. Relational database.
  9. Cloud database.
  10. Object-oriented database.
  11. Graph database.

1. Centralised Database

The data is stored at a centralized location and the users from different locations can access this data via a Application which is coded in some backend language. 
Various kinds of authentication procedures are applied for the verification and validation of end users, likewise, a registration number is provided by the application procedures which keeps a track and record of data usage.

Example- ERP(Enterprise Resource Planning Application)

2. Distributed Database

The distributed database has contributions from the common database which is stored at various computers (Locations). The data in this case is not at one place and is spresd at various sites of an organization or a group. These storage locations are connected to each other with the help of communication links.
Types of distributed database are-
 1-homogenous 
     The databases which have same  hardware and run over same operating systems and                  application procedures
    
 2-heterogeneous.   
      The databases which have same  hardware and run over same different operating systems           and differnet application procedures

3. Personal Database

Data is collected and stored on personal computers(Individual Computers or within the organization only) which is small and easily manageable . The data is generally used by the same department of an organization and is accessed by a small group of people or single user.
     Example- Excel File for any record.

4. End User Database

The end user is usually not concerned about the transaction or operations done at various levels and is only aware of the product which may be a software or an application. Therefore, this is a shared database which is specifically designed for the end user, just like different levels’ managers, Management, Directors, Data analysist. Summary of whole information is collected in the database.
    Example- MIS Reports data.

5. Commercial Database

These are the paid versions of the huge databases designed uniquely for the very huge no of users who want to access the information in bulk at a time for help. These databases are subject specific, and single one cannot afford to maintain such a huge information. Access to such databases is provided through commercial links and a private network.

6.NoSQL Database

These are used for large sets of distributed data. There are some big data performance issues because of that which are effectively handled by relational databases, such kind of issues are easily managed by NoSQL databases. There are very efficient in analyzing large size unstructured data that may be stored at multiple virtual servers of the cloud.

7.Operational Database

Information related to operations of an enterprise is stored inside this database. Functional lines like marketing, employee relations, customer service etc. require such kind of databases.

8. Relational Databases 

These databases are categorized by a set of tables where data gets fit into a pre-defined category. The table consists of rows and columns where the column has an entry for data for a specific category and rows contains instance for that data defined according to the category. The Structured Query Language (SQL) is the standard user and application program interface for a relational database.
There are various simple operations that can be applied over the table which makes these databases easier to extend, join two databases with a common relation and modify all existing applications.
Example- MYSql.

9. Cloud Databases

Now a day, data has been specifically getting stored over clouds also known as a virtual environment , either in a hybrid cloud, public or private cloud. A cloud database is that has been optimized or built for such a virtualized environment. There are various benefits of a cloud database , some of which are the ability to pay for storage capacity and bandwidth on a per-user basis, and they provide scalability on demand, along with high availability.
A cloud database also gives enterprises the opportunity to support business applications in a software-as-a-service deployment.

10.Object-Oriented Databases

An object-oriented database is a collection of object-oriented programming and relational database. There are various items which are created using object-oriented programming languages like C++, Java which can be stored in relational databases, but object-oriented databases are well-suited for those items.
An object oriented database is organized around objects(Real) rather than actions, and data rather than logic. For example, a multimedia data record in a relational database can be a definable data object, as opposed to an alphanumeric value.

11.Graph Databases

The graph is a collection of nodes and edges where each node is used to represent an entity and each edge describes the relationship between entities. A graph oriented database, or graph database, is a type of NoSQL database becuase that uses graph theory to store, map and query relationships.
Graph databases are basically used for analyzing interconnections. For example, companies might use a graph database to mine data about customers from social media details.

Thursday, August 15, 2019

Json Parser Code for Android to JAVA MVC Project Uploading The Image

This Blog post have the complete Code for an Android Application which have database at cload and running on apache TOMCAT.


Json Parser Code for Android to JAVA MVC Project Uploading The Image

In this blog post you can get all information easily which is required to send a request from android application to server(cloud)  and receive and extract  the data in usable format.


This Code is used in School ERP Application for uploading The Image of Code



package com.example.sawan.onlineattendance; // Package Name of Project
import android.util.Log;
import org.apache.http.HttpEntity;
import org.apache.http.HttpResponse;
import org.apache.http.NameValuePair;
import org.apache.http.StatusLine;
import org.apache.http.client.ClientProtocolException;
import org.apache.http.client.HttpClient;
import org.apache.http.client.entity.UrlEncodedFormEntity;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.utils.URLEncodedUtils;
import org.apache.http.impl.client.DefaultHttpClient;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.UnsupportedEncodingException;
import java.util.List;

/**
 * Created by sawan on 9/28/2016.
 */

public class JSONParser {

static InputStream is = null;
static JSONObject jObj = null;
static String json = "";
static InputStream iStream = null;
static JSONArray jarray = null;

public JSONParser() {}
public JSONObject makeHttpRequest(String url2, String method, List < NameValuePair > params)\ {
try {
if (method == "POST") {
DefaultHttpClient httpClient = new DefaultHttpClient();
HttpPost httpPost = new HttpPost(url);
httpPost.setEntity(new UrlEncodedFormEntity(params));
HttpResponse httpResponse = httpClient.execute(httpPost);
HttpEntity httpEntity = httpResponse.getEntity();
is = httpEntity.getContent();
}
else {
DefaultHttpClient httpClient = new DefaultHttpClient();
String paramString = URLEncodedUtils.format(params, "utf-8");
url += "?" + paramString;
HttpGet httpGet = new HttpGet(url);
HttpResponse httpResponse = httpClient.execute(httpGet);
HttpEntity httpEntity = httpResponse.getEntity();
is = httpEntity.getContent();
}

}
catch(UnsupportedEncodingException e) {
System.out.println("UnsupportedEncodingException");
e.printStackTrace();
}
catch(ClientProtocolException e) {
e.printStackTrace();
}
catch(IOException e) {
e.printStackTrace();
}

try {
BufferedReader reader = new BufferedReader(new InputStreamReader(is, "iso-8859-1"), 8);
StringBuilder sb = new StringBuilder();
String line = null;
while ((line = reader.readLine()) != null) {
sb.append(line + "\n");
}
is.close();
json = sb.toString();
} catch(Exception e) {
Log.e("Buffer Error", "Error converting result " + e.toString());
}
try {
jObj = new JSONObject(json);
}
catch(JSONException e) {
Log.e("JSON Parser", "Error parsing data " + e.toString());
}
return jObj;

}
public JSONArray getJSONFromUrl(String url) {
StringBuilder builder = new StringBuilder();
HttpClient client = new DefaultHttpClient();
HttpGet httpGet = new HttpGet(url);
try {
HttpResponse response = client.execute(httpGet);
StatusLine statusLine = response.getStatusLine();
int statusCode = statusLine.getStatusCode();
if (statusCode == 200) {
HttpEntity entity = response.getEntity();
InputStream content = entity.getContent();
BufferedReader reader = new BufferedReader(new InputStreamReader(content));
String line;
while ((line = reader.readLine()) != null) {
builder.append(line);
}
}
else {
Log.e("==>", "Failed to download file");
}
} catch(ClientProtocolException e) {
e.printStackTrace();
} catch(IOException e) {
e.printStackTrace();
}
try {
jarray = new JSONArray(builder.toString());
} catch(JSONException e) {
Log.e("JSON Parser", "Error parsing data " + e.toString());
}
return jarray;
}

public JSONObject makeHttpRequest2(String url) {
try {
DefaultHttpClient httpClient = new DefaultHttpClient();
HttpPost httpPost = new HttpPost(url);
HttpResponse httpResponse = httpClient.execute(httpPost);
HttpEntity httpEntity = httpResponse.getEntity();
is = httpEntity.getContent();
} catch(UnsupportedEncodingException e) {
e.printStackTrace();
} catch(ClientProtocolException e) {
e.printStackTrace();
} catch(IOException e) {
e.printStackTrace();
}

try {
BufferedReader reader = new BufferedReader(new InputStreamReader(
is, "iso-8859-1"), 8);
StringBuilder sb = new StringBuilder();
String line = null;
while ((line = reader.readLine()) != null) {
sb.append(line + "\n");
}
is.close();
json = sb.toString();
} catch(Exception e) {
Log.e("Buffer Error", "Error converting result " + e.toString());
}

try {
jObj = new JSONObject(json);
} catch(JSONException e) {
Log.e("JSON Parser", "Error parsing data " + e.toString());
}
return jObj;

}
}


100+ JAVA Pattern Program






50+ Python Pattern Program



See Also-



Sunday, July 28, 2019

MVC CODE FOR ANDROID REQUEST AND RESPONSE -Programming Logic and Code with Syntax Dizsweb

MVC CODE FOR ANDROID REQUEST AND RESPONSE -Programming Logic and Code with Syntax Dizsweb


package com.sawan;

import java.io.IOException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Enumeration;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.json.JSONObject;
@WebServlet("/DirectorStudentList")
public class DirectorStudentList extends HttpServlet {
 private static final long serialVersionUID = 1L;
 Statement stmt = null; 
  
    public DirectorStudentList() {
        super();
        // TODO Auto-generated constructor stub
    }

 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
    JSONObject json = new JSONObject();  
    Enumeration paramNames = request.getParameterNames();
         String params[] = new String[3];
         int i = 0;
         while (paramNames.hasMoreElements())
         {
             String paramName = (String) paramNames.nextElement();
          System.out.println(".........params[]....................."+paramName);
             System.out.println(paramName);
             String[] paramValues = request.getParameterValues(paramName);
             params[i] = paramValues[0];
          System.out.println(".............+params[i]................."+params[i]);
          System.out.println(".............+params[i]................."+params[i]);
             System.out.println(params[i]);
             i++;
         }
         ResultSet rs=null;
         String table=params[1]; 
         String cutoff=params[0];
         DataBase  db=new DataBase();
         Connection con=db.getConnection();
         table=table;
         String Roll=params[0];
         int code=Integer.parseInt(params[0]);
         System.out.println("rOLL nO............"+Roll);
         String sql="SELECT * FROM Attendance."+table+"  WHERE STUDENTBRANCH ="+code+" AND STUDENTSECTION='"+params[2]+"'"; 
         System.out.println(sql);
         try {    stmt=con.createStatement();
         rs = stmt.executeQuery(sql); 
   } catch (SQLException e1) {

    e1.printStackTrace();
   }
         
         try {
          System.out.println("STEMENT EXECUTE..............");
          System.out.println("RESULT SET EXECUTR..............");
          int u=0;
          int s=0;
          
          while (rs.next()) {
               json.put("name"+s,rs.getString("STUDENTNAME"));
               json.put("roll"+s,rs.getString("STUDENTROLL"));
               json.put("info", "success"); 
              s++;
              json.put("row",s);
                  System.out.println("RESULT SET EXECUTR.......2.......");
                 u=1; 
              }
              if(u==0)
              {
                 json.put("info", "fail");
              }
          
              System.out.println("RESULT SET EXECUTR.........24.....");
         } catch (Exception e) {
             e.printStackTrace();
         }
      
         System.out.println(json);
         response.setContentType("application/json");
         response.setCharacterEncoding("UTF-8");
         response.getWriter().write(json.toString());
}
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {


}
}

Translate